Chain Rule of Derivatives - Examples with Answers - Neurochispas (2024)

The chain rule is a very useful tool used to derive a composition of different functions. It is a rule that states that the derivative of a composition of at least two different types of functions is equal to the derivative of the outer function f(u) multiplied by the derivative of the inner function g(x), where u=g(x).

The first thing we need to do is to write the chain rule formula for our reference:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{x}(g(x))$$

Assuming you are a beginner, let’s identify the functions involved from function composition:

We have

$latex H(x) = (x+2)^2$

If we use the substitution $latex u = g(x) = x+2$, we can write

$latex f(g(x)) = f(u)$

$latex f(u) = u^2$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^2) \cdot \frac{d}{x}(x+2)$$

$$\frac{d}{dx} (H(x)) = (2u) \cdot (1)$$

Since $latex u = x+2$, let us substitute back:

$$\frac{d}{dx} (H(x)) = [2 \cdot (x+2)] \cdot (1)$$

Simplifying algebraically, we have

$latex H'(x) = 2(x+2)$

And the final answer is:

$latex H'(x) = 2x + 4$

If we use the substitution $latex g(x) = u=x^3 – 3x^2 + 2x$, we have:

$latex f(g(x)) = f(u)$

$latex f(u) = u^5$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^5) \cdot \frac{d}{dx}(x^3 – 3x^2 + 2x)$$

$$\frac{d}{dx} (H(x)) = (5u^4) \cdot (3x^2-6x+2)$$

Now, we can substitute $latex u=x^3 – 3x^2 + 2x$ back in:

$$\frac{d}{dx} (H(x)) = [5 \cdot (x^3 – 3x^2 + 2x)^4]\cdot (3x^2-6x+2)$$

Simplifying algebraically, we have

$$H'(x) = (5x^3-15x^2+10x)^4 \cdot (3x^2-6x+2)$$

And the final answer is:

$$H'(x) = (5x^3-15x^2+10x)^4 (3x^2-6x+2)$$

If we consider $latex g(x)=u=3x^2-1$, we can write as follows:

$latex f(g(x)) = f(u)$

$latex f(u) = \ln{(u)}$

Then, we apply the chain rule:

$$ \frac{d}{dx} (F(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (\ln(u)) \cdot \frac{d}{x}(3x^2-1)$$

$$\frac{d}{dx} (F(x)) = (\frac{1}{u}) \cdot (6x)$$

Substituting $latex u=3x^2-1$ back in, we have:

$$\frac{d}{dx} (F(x)) = (\frac{1}{3x^2-1}) \cdot (6x)$$

Simplifying, we have

$$F'(x) = \frac{6x}{3x^2-1}$$

And the final answer is:

$$F'(x) = \frac{6x}{3x^2-1}$$

We start by considering that the inner function is $latex g(x)=u=3x^2+1$. Then, the composition of functions can be written as:

$latex f(g(x)) = f(u)$

$latex f(u) = e^u$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (G(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (G(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{x}(g(x))$$

$$\frac{d}{dx} (G(x)) = \frac{d}{du} (e^u) \cdot \frac{d}{x}(3x^2+1)$$

$$\frac{d}{dx} (G(x)) = (e^u) \cdot (6x)$$

Since $latex u = 3x^2+1$, we substitute in the derivative:

$$\frac{d}{dx} (G(x)) = (e^{3x^2+1}) \cdot (6x)$$

$$G'(x) = 6x \cdot e^{3x^2+1}$$

And the final answer is:

$$G'(x) = 6xe^{3x^2+1}$$

If we consider the inner function as $latex g(x) = u=x^3-9$, then

$latex f(g(x)) = f(u)$

$latex f(u) = \cos(u)$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (\cos(u)) \cdot \frac{d}{dx}(x^3 – 9)$$

$$\frac{d}{dx} (H(x)) = (-\sin(u)) \cdot (3x^2)$$

Since $latex u = g(x)$, we substitute $latex g(x)$ into $latex u$:

$$\frac{d}{dx} (H(x)) = (-\sin(x^3-9)) \cdot (3x^2)$$

Simplifying, we have

$latex H'(x) = -3x^2 \cdot \sin{(x^3-9)}$

And the final answer is:

$latex H'(x) = -3x^2 \sin{(x^3-9)}$

Let us identify the functions involved from the composition of functions:

We have

$$H(x) = \sqrt[3]{x^3 – 3x^2 + 2x}$$

Since this is a radical function, it is always recommended to rewrite it from radical to exponent form to make it derivable. Rewriting, we have

$$ H(x) = (x^3 – 3x^2 + 2x)^{\frac{1}{3}}$$

If $latex g(x) = u=x^3-3x^2+2x$, then

$latex f(g(x)) = f(u)$

$latex f(u) = u^{\frac{1}{3}}$

By using the chain rule with these functions, we have:

$$ \frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$ \frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^{\frac{1}{3}} ) \cdot \frac{d}{dx}(x^3 – 3x^2 + 2x)$$

$$\frac{d}{dx} (H(x)) = (\frac{1}{3} u^{-\frac{2}{3}}) \cdot (3x^2-6x+2)$$

Now, we can substitute $latex u=g(x)$ back in:

$$\frac{d}{dx} (H(x)) = [(\frac{1}{3} \cdot (x^3 – 3x^2 + 2x)^{-\frac{2}{3}})]\cdot (3x^2-6x+2)$$

Simplifying, we have

$$H'(x) = \frac{1}{3 \cdot (x^3 – 3x^2 + 2x)^{\frac{2}{3}}} \cdot (3x^2-6x+2)$$

$$H'(x) = \frac{3x^2-6x+2}{3 \cdot (x^3 – 3x^2 + 2x)^{\frac{2}{3}}}$$

And the final answer is:

$$H'(x) = \frac{3x^2-6x+2}{3 \sqrt[3]{(x^3 – 3x^2 + 2x)^2}}$$
en forma radical

Considering $latex g(x) = u=\sec(x)$ as the inner function, we can write

$latex f(g(x)) = f(u)$

$latex f(u) = u^5$

Using the chain rule, we have:

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} (f(g(x)) ) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^5 ) \cdot \frac{d}{dx}(\sec{(x)})$$

$$\frac{d}{dx} (H(x)) = (5u^4) \cdot (\sec{(x)} \tan{(x)})$$

Now, we can substitute $latex u=\sec(x)$ back into the derivative:

$$\frac{d}{dx} (H(x)) = [5(\sec(x))^4] \cdot (\sec(x) \tan(x))$$

Simplifying, we have

$$H'(x) = 5 \cdot \sec{(x)} \cdot \sec^{4}{(x)} \cdot \tan(x)$$

$$H'(x) = 5 \cdot \tan(x) \cdot \sec^{5}{(x)}$$

And the final answer is:

$latex H'(x) = 5 \tan{(x)} \sec^{5}{(x)}$

If $latex g(x) = u=x^3+e^x$, then

$latex f(g(x)) = f(u)$

$latex f(u) = \log_{7}{u}$

Applying the chain rule formula, we have:

$$\frac{d}{dx} (F(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (\log_{7}{u} ) \cdot \frac{d}{dx}(x^3+e^x)$$

$$\frac{d}{dx} (F(x)) = \left(\frac{1}{u \ln(7)} \right) \cdot (3x^2+e^x)$$

Now, let’s substitute $latex u=x^3+e^x$:

$$\frac{d}{dx} (F(x)) = \left(\frac{1}{(x^3+e^x) \ln(7)} \right) \cdot (3x^2+e^x)$$

Simplifying algebraically, we have

$$\frac{d}{dx} (F(x)) = \left(\frac{1}{(x^3+e^x) \ln{(7)}} \right) \cdot (3x^2+e^x)$$

$$\frac{d}{dx} (F(x)) = \left(\frac{3x^2+e^x}{(x^3+e^x) \ln{(7)}} \right)$$

And the final answer is:

$$F'(x) = \left(\frac{3x^2+e^x}{(x^3+e^x) \ln{(7)}} \right)$$

Considering $latex g(x)=u=\frac{x-1}{x+2}$ as the inner function, we have:

$latex f(g(x)) = f(u)$

$latex f(u) = \cot^{-1}{(u)}$

Now, we can use the chain rule with the functions we have defined:

$$\frac{d}{dx} (F(x)) = \frac{d}{dx} (f(g(x))) \cdot \frac{d}{dx}(g(x))$$

$$ \frac{d}{dx} (F(x)) = \frac{d}{du} (f(u)) \cdot \frac{d}{dx}(g(x))$$

$$\frac{d}{dx} (F(x)) = \frac{d}{du} (\cot^{-1}(u)) \cdot \frac{d}{dx} \left(\frac{x-1}{x+2} \right)$$

$$\frac{d}{dx} (F(x)) = \left(-\frac{1}{u^2+1} \right) \cdot \left(\frac{2}{(x+1)^2} \right)$$

Since $latex u = g(x)$, we substitute $latex g(x)$ into $latex u$:

$$\frac{d}{dx} (F(x)) = \left(-\frac{1}{ \left(\frac{x-1}{x+1} \right)^2+1} \right) \cdot \left(\frac{2}{(x+1)^2} \right)$$

Simplifying, we have

$$\frac{d}{dx} (F(x)) = -\frac{2}{\left(\left(\frac{x-1}{x+1} \right)^2+1\right) \cdot (x+1)^2}$$

$$\frac{d}{dx} (F(x)) = -\frac{1}{x^2+1}$$

And the final answer is:

$$F'(x) = -\frac{1}{x^2+1}$$

This is a more complex case since the function $latex H(x)$ is a composition of four functions.

If $latex f(g(h(j(x)))) = u$, then

$latex f(g(h(j(x)))) = f(u)$
$latex f(u) = u^2$

If $latex g(h(j(x))) = v$, then

$latex g(h(j(x))) = g(v)$
$latex g(v) = \tan{(v)}$

If $latex h(j(x)) = w$, then

$latex h(j(x)) = h(w)$
$latex h(w) = e^w$

$latex w = j(x) = 3x$

If $latex f(g(h(j(x)))) = f(u)$, then

$$\frac{d}{dx} [f(g(h(j(x))))] = \frac{d}{du} [f(u)]$$

If $latex g(h(j(x))) = g(v)$, then

$$\frac{d}{dx} [g(h(j(x)))] = \frac{d}{dv} [g(v)]$$

If $latex h(j(x)) = h(w)$, then

$$\frac{d}{dx} [h(j(x))] = \frac{d}{dw} [h(w)]$$

Adjusting our chain rule formula for the derivative of compositions of four functions, we have

$$\frac{d}{dx} (H(x)) = \frac{d}{dx} \left(f(g(h(j(x)))) \right)\cdot \frac{d}{dx} \left(g(h(j(x))) \right) \cdot \left(h(j(x)) \right) \cdot \frac{d}{dx}(j(x))$$

$$\frac{d}{dx} (H(x)) = \frac{d}{du} \left(f(u)) \right) \cdot \frac{d}{dv} \left(g(v)) \right) \cdot \frac{d}{dw} \left(h(w)) \right) \cdot \frac{d}{dx}(j(x))$$

Applying our adjusted chain rule formula for the derivative of the composition of four functions, we have

$$\frac{d}{dx} (H(x)) = \frac{d}{du} (u^2) \cdot \frac{d}{dv} (\tan{(v)}) \cdot \frac{d}{dw} (e^w) \cdot \frac{d}{dx}(3x)$$

$$\frac{d}{dx} (H(x)) = (2u) \cdot (\sec^{2}{(v)}) \cdot (e^w) \cdot (3)$$

Since $latex u = g(h(j(x)))$, $latex v = h(j(x))$ and $latex w = j(x)$, let’s apply these substitutions:

$$\frac{d}{dx} (H(x)) = (2(\tan{(e^{3x})})) \cdot (\sec^{2}{(e^{3x})}) \cdot (e^{3x}) \cdot (3)$$

Simplifying algebraically, we have

$$\frac{d}{dx} (H(x)) = 2 \cdot 3 \cdot e^{3x} \cdot \tan{(e^{3x})} \cdot \sec^{2}{(e^{3x})}$$

$$H'(x) = 6 \cdot (e^{3x}) \cdot \tan{(e^{3x})} \cdot \sec^{2}{(e^{3x})}$$

And the final answer is:

$$ H'(x) = 6 \cdot (e^{3x}) \tan{(e^{3x})} \sec^{2}{(e^{3x})}$$

As you can see from our solution to this problem, deriving compositions of four functions, you will realize why the chain rule was coined from the term “chain”.

Chain Rule of Derivatives - Examples with Answers - Neurochispas (2024)
Top Articles
That Girl Lay Lay – Age, Bio, Personal Life, Family & Stats | CelebsAges
Spoiler Review: Layla by Colleen Hoover
Busted Newspaper Zapata Tx
Best Team In 2K23 Myteam
The 10 Best Restaurants In Freiburg Germany
Voorraad - Foodtrailers
Brendon Tyler Wharton Height
Vaya Timeclock
Fully Enclosed IP20 Interface Modules To Ensure Safety In Industrial Environment
How to change your Android phone's default Google account
Craigslist Free Stuff Appleton Wisconsin
When is streaming illegal? What you need to know about pirated content
His Lost Lycan Luna Chapter 5
Green Bay Press Gazette Obituary
Chuckwagon racing 101: why it's OK to ask what a wheeler is | CBC News
Displays settings on Mac
Self-guided tour (for students) – Teaching & Learning Support
J Prince Steps Over Takeoff
Whiskeytown Camera
FIX: Spacebar, Enter, or Backspace Not Working
Explore Top Free Tattoo Fonts: Style Your Ink Perfectly! 🖌️
Bahsid Mclean Uncensored Photo
Cashtapp Atm Near Me
SXSW Film & TV Alumni Releases – July & August 2024
The Cure Average Setlist
Bj Alex Mangabuddy
Missed Connections Inland Empire
Recap: Noah Syndergaard earns his first L.A. win as Dodgers sweep Cardinals
Full Standard Operating Guideline Manual | Springfield, MO
Indystar Obits
Www.dunkinbaskinrunsonyou.con
Bidevv Evansville In Online Liquid
Booknet.com Contract Marriage 2
Obituaries, 2001 | El Paso County, TXGenWeb
Healthy Kaiserpermanente Org Sign On
Spirited Showtimes Near Marcus Twin Creek Cinema
Chadrad Swap Shop
Stolen Touches Neva Altaj Read Online Free
Marine Forecast Sandy Hook To Manasquan Inlet
Toonily The Carry
How to Draw a Sailboat: 7 Steps (with Pictures) - wikiHow
Why I’m Joining Flipboard
World Social Protection Report 2024-26: Universal social protection for climate action and a just transition
Dwc Qme Database
Rage Of Harrogath Bugged
Pulaski County Ky Mugshots Busted Newspaper
Watch Chainsaw Man English Sub/Dub online Free on HiAnime.to
Best Haircut Shop Near Me
Dyi Urban Dictionary
Egg Inc Wiki
About us | DELTA Fiber
Guidance | GreenStar™ 3 2630 Display
Latest Posts
Article information

Author: Moshe Kshlerin

Last Updated:

Views: 6364

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Moshe Kshlerin

Birthday: 1994-01-25

Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

Phone: +2424755286529

Job: District Education Designer

Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.